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Abstract. - Complex systems research is becomingly increasingly data-driven, particularly in the
social and biological domains. Many of the systems from which sample data are collected feature
structural heterogeneity at the mesoscopic scale (i.e. communities) and limited inter-community
diffusion. Here we show that the interplay between these two features can yield a significant bias
in the global characteristics inferred from the data. We present a general framework to quantify
this bias, and derive an explicit corrective factor for a wide class of systems. Applying our analysis
to a recent high-profile survey of conflict mortality in Iraq suggests a significant overestimate of
casualties.

Introduction. – Monitoring large social or biologi-
cal systems bears similar challenges to monitoring many-
particle systems in physics. The increasing availability of
data on human behaviour from information and commu-
nication technologies [1,2] and data from high throughput
techniques in biology enable scientists to study these di-
verse systems with similar methodologies. Many biologi-
cal and social systems are not internally homogeneous, but
instead feature time-dependent community groupings and
limited inter-community mixing [1–4]. Individuals form
dynamic groups in professional and private settings re-
flected in, for example, structures of scientific collabora-
tion and mobile phone call patterns [3]. The cell nucleus
consists of multiple compartments with different micro-
environments that exist in spatially localised regions in
the heterogeneous intranuclear space [4]. This problem
setup is similar to that in so-called metapopulation mod-
els, which involve spatially structured populations and are
commonly used in ecology and epidemiology [5,6]. In this
Letter, we quantify the consequences of sampling a subset
of objects in such a system. Starting with a general the-
oretical framework, we show that the interplay between
heterogeneity and limited diffusion can yield a substan-

tial bias in the inferred global characteristics. We obtain
an explicit corrective factor to offset a bias that occurs if
the structural heterogeneity of the system and the limited
internal diffusion within the system are not taken into ac-
count in the initial data sampling. We consider the specific
example of a recent conflict mortality study in Iraq and
find support for a considerable positive bias in the inferred
casualty numbers.

General framework. – Consider a large system
made up of N particles characterised by a microscopic
state variable xi. The system is heterogeneous in that
it consists of m different subsystems or communities
S1, . . . , Sm with Ni particles in Si such that N1 + . . . +
Nm = N . The subsystems are interconnected in some
limited way, thereby allowing for only partial diffusion or
mixing of particles between them. We wish to learn about
the state of the system described by the extensive macro-
scopic variable X =

∑N
i=1 xi but, in line with typical em-

pirical scenarios, assume that we cannot observe the entire
system. Instead, we monitor the state of a set of tagged
particles in different subsystems and use this data to make
statistical inferences about X.
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(a) (b)

Fig. 1: (Colour online) (a) The system is prepared by tagging
some particles in some of the subsystems, which corresponds to
a sampling process. The particles are non-interacting and in-
distinguishable apart from the initial subsystem given by their
colour. (b) After the initial state, the matrix f != I quan-
tifies mixing between subsystems. It can be interpreted as a
weighted and directed network adjacency matrix of the subsys-
tems. The state of particle xi ∈ {0, 1} is indicated by colouring
its circumference black or white, respectively. Only tagged par-
ticles are visible and available for analysis.

Let us assume that the particles are identical and non-
interacting and that each can be in one of two states
xi ∈ {0, 1}. The system is initially prepared with xi = 0
for all i and only irreversible 0 → 1 changes are considered.
Microscopic state changes are subsystem specific, with the
element qk of the vector !q specifying the probability for a
particle in subsystem Sk to change state. Hence the xi are
independent and identically distributed random variables
within a given subsystem and we let yk denote a random
variable having the distribution of any xi present in Sk.
The state of a particle can be identified with, for exam-
ple, the staining of cancerous cells in a biological organism
under medical imaging (stained vs. clear), or the disease
status of an individual (healthy vs. diseased). The sub-
system specific probabilities !q could arise from there being
different numbers of cancerous cells or pathogens in these
systems.

The mixing of particles is governed by the constant mix-
ing matrix f = [!f1

!f2 · · · !fm], where !fi specifies the fraction
of time particles initially placed in Si spend in other sub-
systems. The entries of f can be interpreted as probabili-
ties of finding particles in different subsystems (see Fig. 1).
The diagonal elements fii correspond to the probability of
finding a particle in its initial subsystem. Note that f
does not need to be symmetric. In the limit as the mobil-
ity of the particles tends to zero, the matrix f consists of
only diagonal elements fij = δij , with the effect that the
subsystems become completely isolated.

Denote by Xi is the contribution of all particles initially
in Si towards X, and by Xij the contribution of a single
particle j = 1, . . . , Ni initially in Si towards Xi. Let Dik

denote the number of particles initially in Si which are
observed in Sk; then Dik follows a binomial distribution
with parameters Ni and fik. We write our quantity of

interest X as

X =
m∑

i=1

Xi =
m∑

i=1

Ni∑

j=1

Xij . (1)

Consider now a situation where, to estimate X, we can
draw samples from only some of the subsystems. Let S
consisting of m subsets Sk denote the set of all subsystems
and let S′ =

⋃m′

k=1 Sk, i.e. the first m′ of these sets, denote
the set of samplable subsystems. The expectation value
of X in the entire system, 〈X〉S , and in the samplable
system, 〈X〉S′ , is given by

〈X〉S =
m∑

i=1

〈Xi〉 =
m∑

i=1

m∑

k=1

〈Dik〉〈yk〉 =
m∑

i=1

Ni

m∑

k=1

fik〈yk〉

〈X〉S′ =
m′∑

i=1

〈Xi〉 =
m′∑

i=1

Ni

m∑

k=1

fik〈yk〉, (2)

respectively. If the subsystems are heterogeneous and this
is not accounted for in the sampling procedure, we may
incur a significant bias. To quantify this, we define the
bias factor R as the scaled ratio of 〈X〉S′ to 〈X〉S ,

R =
∑m′

i=1 Ni
∑m

k=1 fik〈yk〉/N ′
∑m

i=1 Ni
∑m

k=1 fik〈yk〉/N
, (3)

where N ′ ≤ N is the number of particles in S′ and values
of R > 1 (R < 1) correspond to overestimating (underes-
timating) the expectation value of X in the system when
sampling is based on subsystems in S′ only.

Specialised framework. – A special case of the
framework arises when the microscopic state variables xi

and yk correspond to independent Bernoulli trials related
to some event ω. We assume that the event ω occurs inde-
pendently of the mixing. Now qi (1−qi) is the probability
of observing x = 1 (x = 0) in subsystem Si long enough af-
ter the initial state so that the system has reached an equi-
librium. Regardless of the number of subsystems present,
the system can always be divided into a samplable sub-
system and a non-samplable subsystem. Let SI = S′ and
let the remaining subsystems form the non-samplable sub-
system SO =

⋃m
k=m′+1 Sk. As a mnemonic, the subscript

I refers to in-sample and O to out-of-sample. Note that
whereas before S′ ⊆ S, here SI ∩SO = ∅, so that although
SI = S′, SO *= S. We now have NI = N ′ =

∑m′

k=1 Nk and
NO =

∑m
k=m′+1 Nk, corresponding to the number of parti-

cles in SI and SO, respectively, and NI +NO = N . We de-
fine the ’renormalised’ probabilities qI = N−1

I

∑m′

k=1 Nk qk

for a particle to be subjected to ω while present in SI and
its complement 1− qI for the particle to not be subjected
to ω while present in SI . Similarly, we define for SO the
probability qO = N−1

O

∑m
k=m′+1 Nk qk (and its comple-

ment 1 − qO) for a particle to (not) be subjected to ω
while present within SO. Finally, we define the mobility
factors such that fI (fO) is the probability for a particle
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Sampling bias

initially placed in SI (SO) to be present within SI (SO),
and 1−fI (1−fO) is the probability for a particle initially
placed in SI (SO) to not be present within SI (SO), i.e.,
to be present within SO (SI). These are written as

fI = N−1
I

m′∑

i=1

Ni

m′∑

j=1

fij

fO = N−1
O

m∑

i=m′+1

Ni

m∑

j=m′+1

fij . (4)

We now define παβ with α,β ∈ {O, I} as the probability
that a particle picked uniformly at random was placed
initially in Sα with xi = 0 and changes state to xi = 1 in
Sβ . This leads to πOO = NO

NI+NO
fO qO, πOI = NO

NI+NO
(1−

fO) qI , πIO = NI
NI+NO

(1− fI) qO, and πII = NI
NI+NO

fI qI .
The sum πII + πIO + πOI + πOO is the probability that
a randomly chosen particle is subjected to ω and hence
changes its microscopic state. The expected number of
particles with xi = 1 in a population of size N is hence
NO fO qO + NO (1− fO) qI + NI (1− fI) qO + NI fI qI =
(qI − qO)(fINI − fONO) + qINO + qONI , whereas the
probability that a randomly chosen particle in SI changes
state is qIfI + qO(1− fI). Hence the expected number of
realisations for a population of size N , based on the rate
for SI only, would be (NI + NO)[qIfI + qO(1 − fI)]. We
obtain

R =
(NI + NO)[qIfI + qO(1− fI)]

(qI − qO)(fINI − fONO) + qINO + qONI
. (5)

Assuming that NI *= 0 and qO *= 0, and setting q = qI/qO

and n = NO/NI , we obtain

R = R(fI , fO, q, n) =
(1 + n)(1 + qfI − fI)

(q − 1)(fI − fOn) + qn + 1
. (6)

Hence the bias factor R depends only on fI , fO, and the
ratios q = qI/qO and n = NO/NI . Finally, in the case of
symmetric mobility fI = fO = f the above simplifies to

R = R(f, q, n) =
(1 + n)(1 + qf − f)

f(q − 1)(1− n) + qn + 1
. (7)

The no-bias limit of R = 1 requires either (1) n = 0
(i.e. NO = 0) implying that no particle is placed initially
in SO, or (2) q = 1 (i.e. qI = qO) implying equal rates
of changing state in SI and SO, or (3) f = 1/2 which
suggests that particles based in SI spend on average half
of their time in SO and vice versa. Setting R(f, q, n) = r
for general r and solving for q in terms of n and f yields

q(f, n, r) =
f(1 + n + nr − r) + r − n− 1

f(1 + n + nr − r)− nr
. (8)

Although q is unobservable, we can estimate q̃ =
N−1

∑
i,j Xij and q̃′ = (N ′)−1

∑m′

i=1

∑Ni

j=1 Xij , leading to

the asymptotically unbiased estimator R̂ = q̃′/q̃ for the
bias factor R. If R = 1 then we would expect that R̂ ≈ 1.
The variation in R̂ can be assessed via a normal approx-
imation [9]. Basing q̃′ on SI and assuming that 〈X〉S is
not too small, the approximate variance is

Var(R̂) ≈ (1 + n)2

q0NI

(
f(q − 1)(1− n) + qn + 1

)2 ×

(
fq(1− qI) + (1− f)(1− qO) + f(1− f)(qqI + qO − q)

)
. (9)

Application to conflict mortality. – We will now
exemplify the above framework by applying it to study
conflict mortality. To estimate the number of casualties
in a conflict, one would ideally like to have access to a
complete national list of households from which a sample
could be drawn at random. Even when this scenario is fea-
sible, the selected households are widely scattered, which
is costly not only in terms of time and money, but also
exposes the researchers to high levels of risk. To over-
come these concerns, recent studies economise resources
by using a cluster sampling methodology. This hierarchi-
cal sampling process involves making choices on how to
choose large geographic areas and how to proceed from
them to individual households.

We can equate particles in the framework with indi-
viduals such that the system size N corresponds to the
population of the country and the state of each particle
xi ∈ {0, 1} corresponds to the individual being alive or
dead (where the death has resulted from conflict related
violence), respectively. The different subsystems corre-
spond to heterogeneous areas that are characterised by
varying levels of conflict related violence such that the
probability for an individual to be killed when he or she
is in Sk is given by qk regardless of where his or her resi-
dence is located. Note that these areas, or zones, may be
fragmented and inter-dispersed. Now 〈Xk〉 corresponds to
the expected number of casualties in Sk for a given qk,
and 〈X〉 corresponds to the expected number of casualties
in the country. Daily human movement between different
areas is quantified by the mixing matrix. The initial sub-
system of a particle can be identified with the residential
zone of the individual. The ’renormalised’ systems SI and
SO correspond to sets of subsystems that may or may not
be sampled, respectively, given the sampling method. To
include an individual in the study, his or her home needs
to be located in the samplable subsystem SI .

Let us consider a situation in which data has been col-
lected, using some sampling method, and we have a reason
to suspect that there is a systematic bias in the sampling
procedure that is not sufficiently sensitive to the structural
heterogeneity of the system and the limited internal dif-
fusion within the system. We can then use the proposed
framework, after the initial data collection, to offset the
bias resulting from not having taken these factors fully
into account.
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Fig. 2: (Colour online) Structural heterogeneity in a social sys-
tem under conflict. The map shows the average homicide rate
according to censual sectors in Bogotá, Colombia, in the pe-
riod 1997-1999. Source: Instituto Nacional de Medicina Legal.
Figure adapted from [12].

Structural heterogeneity between subsystems in the con-
text of conflict mortality is exemplified in Fig. 2, which
shows how urban violence varies from neighbourhood to
neighbourhood, in this case in Bogotá, Colombia. Sim-
ilar patterns hold for cities worldwide [13]. While these
data are based mostly on criminal violence as opposed
to conflict violence, it is plausible that, similarly, a spa-
tially inhomogeneous pattern holds for conflict violence.
Each cell in the map can be associated with one of the
k = 1, . . . ,m subsystems and the colouring reflects a re-
alised value of Xk. In a completely homogeneous system
with q1 = · · · = qm we have 〈X1〉 = · · · = 〈Xm〉 and would
expect to observe less fluctuation in the values of Xk. We
conjecture that structural heterogeneity is likely to hold
in conflict areas.

Limited internal diffusion between subsystems in the
context of conflict mortality is exemplified in Fig. 3, which
shows the location of residence of the victims (horizontal
axis) and the location of attacks (vertical axis) in a conflict
in Thailand. This matrix can be interpreted to reflect the
underlying diffusion matrix f and it is useful to consider
two limiting cases. First, if the matrix were completely
scattered, there would be no correlation between the lo-
cation of residence and the location of violence. In this
case the choice of sampling locations and the locations of
violence are uncorrelated, and one might wish to choose
sampling locations that are easily accessible. These sam-
pling locations might be inherently more or less violent
than the system at large but, due to extensive mobility
of individuals, the choice of sampling locations would not
induce a systematic bias. Second, if the matrix were per-
fectly diagonal, there would be a one-to-one correlation
between the location of residence and the location of vi-
olence. If the sampling locations were, say, more violent
than the system at large, due to lack of mobility between

Fig. 3: (Colour online) Limited internal diffusion in a social
system under conflict. The relationship between the residence
of the injured victims and the place where they were attacked.
The axes correspond to 59 distinct spatial locations listed in
identical order, such that the horizontal axis represents the res-
idence of the victims while the vertical axis represents the place
where the incident occurred. The data are from a conflict in
Thailand and they are based on a hospital monitoring system.
The bubble plots reflect the number of casualties in each area.
Figure adapted from [10].

subsystems, the overall estimate would be biased upward.
In both scenarios one would need to take population den-
sities into account. We conjecture that diffusion between
subsystems is very limited under conflict.

We now focus on the final stages of the sampling proce-
dure that was used estimate conflict mortality in Iraq [7],
and refer to it as the Cross Street Sampling Algorithm
(CSSA): (1) Select a “constituent administrative unit”
proportionally to their estimated population size, (2) se-
lect a main street from “a list of all main streets”, (3)
select randomly a residential street from “a list of res-
idential streets crossing the main streets”, (4) enumer-
ate the households on the street, (5) select one house-
hold at random to initiate the interviewing, proceeding to
39 further adjacent households. For conflicts like the one
in Iraq, violent events tend to be focused around cross-
streets since they are a natural habitat for patrols, con-
voys, police stations, parked cars, roadblocks, cafes and
street-markets [8]. This can be seen in Fig. 4 which shows
the position of major attacks in Baghdad. Because cross-
streets are chosen for sampling, the location of violence
and the location of sampled sites are correlated by means
of accessibility. This correlation results in a biased esti-
mate of casualties and is further amplified due to minimal
mixing of populations between the zones.

To apply the above framework we need values for the
model parameters. The population parameter n = NO/NI

gives the proportion of population resident in SO to that
resident in SI . Street layouts in Iraq are often irreg-
ular, hence CSSA will miss any neighbourhood not in
the immediate proximity of a cross-street. Analysis of
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Sampling bias

Fig. 4: (Colour online) A satellite image of Baghdad showing
the position of attacks that resulted in more than 10 dead.
“[The attacks] are located as accurately as possible from re-
ports since 2003. Where an exact location is not possible, in
areas such as Sadr City, the marker has been placed within
the district.” The locations of the attacks coincide with the
structure of underlying road network with most attacks taking
place either on major roads or on roads off major roads. Image
and quotation from BBC News [11].

Iraqi maps suggests n = 10 is plausible [8]. The vio-
lence parameter q = qI/qO gives the relative probabil-
ity of death for anyone present in SI , regardless of their
zone of residence, to that of SO. For conflicts like the one
in Iraq, violent events tend to be focused around cross-
streets since they are a natural habitat for patrols, con-
voys, police stations, parked cars, roadblocks, cafes and
street-markets. Major highways would not offer such a
wide range of potential targets – nor would secluded neigh-
borhoods and, therefore, the streets that define the sam-
plable region SI are prime targets for improvised explo-
sive devices, car bombs, sniper attacks, abductions and
drive-by shootings [8]. Given the extent and frequency of
attacks, q = 5 is plausible [8]. The diffusion parameter
f = fI = fO gives the fraction of time spent by resi-
dents of SI (SO) in SI (SO). Given the nature of the
violence, travel is limited; women, children and the el-
derly tend to stay close to home. Consequently, mixing
of populations between the zones is minimal. Using the
time people spend in their homes as a lower bound on the
time they spend in their zones, assuming that there are
two working-age males per average household of seven [7],
with each spending 6h per 24h day outside their own zone,
yields f = fI = fO = 5/7+2/7 ·18/24 = 13/14 [8]. These
values yield R = 3.0, suggesting that the Iraq estimate [7]
provides a substantial overestimate of deaths.

It is clear from Eq. 6 that in order to arrive at an accu-
rate estimate of R, one needs to have reasonably accurate
estimates of the parameters fI , fO, q and n. To gauge the

sensitivity of our result, we perform a simple sensitivity
analysis by evaluating R for different values of parameters
in Fig. 5. This shows the effect of relaxing the constraint
f = fI = fO and it is clear that in the limit of no mobility
(fI = fO = 1) the bias is greatest. Conceptually speaking,
the bias emerges from having simultaneously partial local-
isation of violence (structural heterogeneity) and partial
localisation of people (limited internal diffusion). Both of
these conditions are needed for the bias to emerge, since if
q = 1 (structural homogeneity) we have R = 1 regardless
of n and f , and if f = 1/2 (perfect diffusion), we have
R = 1 regardless of q and n. In general, the shapes of the
R-surfaces in Fig. 5 are smooth and the surfaces are mono-
tonically increasing functions of n and q. In this sense the
framework is robust to the parameter values.

A more precise quantification of the bias can be achieved
within the framework only if the actual micro-level data
of the conflict study [7] are released, which would enable
a more precise determination of the model parameters.
Importantly, this does not entail further data collection,
which is especially valuable when the survey needs to be
carried out under extremely difficult conditions. Even re-
lease of information concerning how many streets are in-
cluded in “a list of all main streets” in step (2) of CSSA
would improve the estimate. This is because the defini-
tion of a “main street” sets the granularity level of the
system. A shorter list implies that the areas enclosed by
the streets are bigger, which necessarily decreases mixing
between areas, and results in an even larger bias.

Conclusion. – We have presented a framework that
can be used to gauge sampling bias in systems consisting of
heterogeneous subsystems with limited diffusion between
subsystems. We have applied the framework to a recent
conflict mortality study [7] to illustrate the principle of
how one can, after the initial data collection, adjust for
the bias resulting in sampling such a system. Our aim has
not been to give a precise numerical estimate of this bias.
Instead, we have demonstrated that the conflict mortality
study is likely to present a high upward bias and, using our
framework, have gauged the extent of this bias using sim-
ple plausibility arguments for our framework parameters.
It appears that the results reported in [7] are a substan-
tial overestimate of deaths. This finding is compatible
with recent independent research. The figures reported
in [7] are 3 times higher than the Iraq Living Conditions
Survey of the UN Development Program estimate for the
same time period (the first 13 months of the war) [14],
4 times the Iraq Family Health Survey estimate for the
same time period [16], and 12 times the Iraq Body Count
estimate (based on media monitoring) for the same time
period [15]. Given that many social and biological systems
feature structural heterogeneity and limited internal diffu-
sion, our framework should prove invaluable for correcting
for biases resulting from these components.
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Fig. 5: (Colour online) Sensitivity analysis of bias factor R defined by Eq. 6. Each panel shows R = R(fI , fO, q, n) with the
values of fI and fO fixed for each panel. Here fI (fO) varies by columns (rows) over the values {0.75, 0.85, 0.95} increasing from
left to right (bottom to top). The height of the surface from the (n, q) surface, in addition to being given by the z-coordinate
in the plots, is also colour coded to guide the eye and to emphasise the smoothness of the surfaces.
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